In this series, I'll share my progress with the 2023 version of Advent of Code.
Check the first post for a short intro to this series.
You can also follow my progress on GitHub.
December 16th
The puzzle of day 16 was a lot of instructions for a fairly trivial coding problem.
My pitfall for this puzzle: The code is very inelegant, lots of if
statements, and unfortunately no time to refactor this one.
Solution here, do not click if you want to solve the puzzle first yourself
#!/usr/bin/env python3
with open('input-small.txt') as infile:
lines = infile.readlines()
grid = []
for line in lines:
grid.append([c for c in line.strip()])
def trace(beam, grid, visited):
x = beam[1]
y = beam[0]
direction = beam[2]
while True:
if y < 0 or y >= len(grid) or x < 0 or x >= len(grid[0]):
return []
tile = grid[y][x]
if (y, x, direction) in visited:
return []
else:
visited.append((y, x, direction))
if tile == '|':
if direction == 'left' or direction == 'right':
return [(y - 1, x, 'up'), (y + 1, x, 'down')]
elif tile == '-':
if direction == 'up' or direction == 'down':
return [(y, x - 1, 'left'), (y, x + 1, 'right')]
elif tile == '\\':
if direction == 'up':
return [(y, x - 1, 'left')]
elif direction == 'down':
return [(y, x + 1, 'right')]
if direction == 'right':
return [(y + 1, x, 'down')]
elif direction == 'left':
return [(y - 1, x, 'up')]
elif tile == '/':
if direction == 'up':
return [(y, x + 1, 'right')]
elif direction == 'down':
return [(y, x - 1, 'left')]
if direction == 'right':
return [(y - 1, x, 'up')]
elif direction == 'left':
return [(y + 1, x, 'down')]
if direction == 'right':
x += 1
elif direction == 'left':
x -= 1
elif direction == 'up':
y -= 1
elif direction == 'down':
y += 1
def calc_energized(start, grid):
beams = [start]
visited = []
while beams:
beams.extend(trace(beams.pop(), grid, visited))
visited = set([(v[0], v[1]) for v in visited])
result = len(visited)
print(f'{start} = {result}')
return result
start_coords = []
start_coords.extend([(0, x, 'down') for x in range(len(grid[0]))])
start_coords.extend([(y, len(grid[0]) - 1, 'left') for y in range(len(grid))])
start_coords.extend([(len(grid) - 1, x, 'up') for x in range(len(grid[0]))])
start_coords.extend([(y, 0, 'right') for y in range(len(grid))])
print(max([calc_energized(s, grid) for s in start_coords]))
That's it! See you again tomorrow!